Gentle Mechanical Skin Stimulation Inhibits Micturition Contractions via the Spinal Opioidergic System and by Decreasing Both Ascending and Descending Transmissions of the Micturition Reflex in the Spinal Cord
نویسندگان
چکیده
Recently, we found that gentle mechanical skin stimulation inhibits the micturition reflex in anesthetized rats. However, the central mechanisms underlying this inhibition have not been determined. This study aimed to clarify the central neural mechanisms underlying this inhibitory effect. In urethane-anesthetized rats, cutaneous stimuli were applied for 1 min to the skin of the perineum using an elastic polymer roller with a smooth, soft surface. Inhibition of rhythmic micturition contractions by perineal stimulation was abolished by naloxone, an antagonist of opioidergic receptors, administered into the intrathecal space of the lumbosacral spinal cord at doses of 2-20 μg but was not affected by the same doses of naloxone administered into the subarachnoid space of the cisterna magna. Next, we examined whether perineal rolling stimulation inhibited the descending and ascending limbs of the micturition reflex. Perineal rolling stimulation inhibited bladder contractions induced by electrical stimulation of the pontine micturition center (PMC) or the descending tract of the micturition reflex pathway. It also inhibited the bladder distension-induced increase in the blood flow of the dorsal cord at L5-S1, reflecting the neural activity of this area, as well as pelvic afferent-evoked field potentials in the dorsal commissure at the lumbosacral level; these areas contain long ascending neurons to the PMC. Neuronal activities in this center were also inhibited by the rolling stimulation. These results suggest that the perineal rolling stimulation activates the spinal opioidergic system and inhibits both ascending and descending transmissions of the micturition reflex pathway in the spinal cord. These inhibitions would lead to the shutting down of positive feedback between the bladder and the PMC, resulting in inhibition of the micturition reflex. Based on the central neural mechanisms we show here, gentle perineal stimulation may be applicable to several different types of overactive bladder.
منابع مشابه
Age-Related Changes in Neuromodulatory Control of Bladder Micturition Contractions Originating in the Skin
The brainstem is essential for producing micturition contractions of the urinary bladder. Afferent input from perineal skin evoked by gentle mechanical stimulation inhibits micturition contractions by decreasing both ascending and descending transmissions between the brainstem and spinal cord. Dysfunction of this inhibitory mechanism may be one cause of the increase in the prevalence of overact...
متن کاملEffects of WAY100635, a selective 5-HT1A-receptor antagonist on the micturition-reflex pathway in the rat.
5-Hydroxytryptamine (5-HT) receptors in the central nervous system have been implicated in the control of micturition. The present study was undertaken to evaluate the effects of a selective 5-HT1A-receptor antagonist [N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY100635)] on the micturition-reflex pathway in urethane-anesthetized fema...
متن کاملActivation and inhibition of the micturition reflex by penile afferents in the cat.
Coordination of the urinary bladder and the external urethral sphincter is controlled by descending projections from the pons and is also subject to modulation by segmental afferents. We quantified the effects on the micturition reflex of sensory inputs from genital afferents traveling in the penile component of the somatic pudendal nerve by electrical stimulation of the dorsal nerve of the pen...
متن کاملInhibitory and excitatory perigenital-to-bladder spinal reflexes in the cat.
This study revealed that in awake chronic spinal cord-injured (SCI) cats reflexes from perigenital skin area to the bladder can be either inhibitory or excitatory. Electrical perigenital stimulation at frequencies between 5 and 7 Hz significantly inhibited large-amplitude rhythmic reflex bladder activity, whereas frequencies between 20 and 40 Hz induced large-amplitude bladder contractions even...
متن کاملSprouting of substance P-expressing primary afferent central terminals and spinal micturition reflex NK1 receptor dependence after spinal cord injury.
The primary afferent neurotransmitter triggering the spinal micturition reflex after complete spinal cord injury (SCI) in the rat is unknown. Substance P detected immunohistochemically in the sacral parasympathetic nucleus was significantly higher in 12 SCI rats than in 12 spinally intact rats (P = 0.008), suggesting substance P as a plausible candidate for the primary afferent neurotransmitter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015